Abstract

Promoting both root growth and defense is conducive to the production of potatoes (Solanum tuberosum L.), while the role of elicitors in this topic hasn’t been fully understood. To investigate the effect of Riclinoctaose (RiOc) on root growth and defense, potato tissue cuttings were cultivated with different concentration of RiOc (0, 50, 200 mg/L) for 5 weeks and changes in root morphology, transcription, enzymatic and metabolomic profiles were monitored over time. The results indicated that RiOc triggered the salicylic acid (SA)-mediated defense response and facilitated the growth of adventitious and lateral roots in a dose- and time-dependent manner. MPK3/MPK6, SA- and auxin-signaling pathways and transcription factors such as WUS, SCR and GRAS4/GRAS9 participated in this process. Moreover, the 1H NMR based metabolome profiling demonstrated that potato roots altered the primary metabolism to respond to the RiOc elicitation and efficiency in production and allocation of defense and growth-related metabolites was improved. After 5-week treatment, the level of glucose, N-acetylglucosamine, glutamine, asparagine, isoleucine, valine, 3-hydroxyisovalerate and ferulate increased, while acetate, acetoacetate, fucose, and 2-hydroxyphenylacetate declined. In conclusion, RiOc played dual roles in activating the SA-mediated defense response and in promoting growth of potato roots by inducing changes in root transcription and metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call