Abstract

We consider the game of Cops and Robbers played on finite and countably infinite connected graphs. The length of games is considered on cop-win graphs, leading to a new parameter, the capture time of a graph. While the capture time of a cop-win graph on n vertices is bounded above by n − 3 , half the number of vertices is sufficient for a large class of graphs including chordal graphs. Examples are given of cop-win graphs which have unique corners and have capture time within a small additive constant of the number of vertices. We consider the ratio of the capture time to the number of vertices, and extend this notion of capture time density to infinite graphs. For the infinite random graph, the capture time density can be any real number in [ 0 , 1 ] . We also consider the capture time when more than one cop is required to win. While the capture time can be calculated by a polynomial algorithm if the number k of cops is fixed, it is NP-complete to decide whether k cops can capture the robber in no more than t moves for every fixed t .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call