Abstract

ObjectiveThe objective of this study was to compare the CAPRA-S score (based on clinicopathological findings) and the subtypes of minimal residual disease (MRD) (based on the biological properties of cancer cells) to predict biochemical failure (BF) after prostatectomy radical.Patients and methodsThis was a prospective single-centre study of men who underwent radical prostatectomy. One month after surgery, the blood and bone marrow were taken for circulating prostate cell (CPC) and micrometastasis detection, identified using anti-PSA immunocytochemistry and defined as positive or negative. Patients were classified as Group A: CPC and micrometastasis negative, Group B: micrometastasis positive and CPC negative and Group C: CPC positive. CAPRA-S scores were classified as low, intermediate and high risk. Kaplan–Meier curves for biochemical failure-free survival (BFFS) and restricted mean survival time (RMST) to biochemical failure were determined and compared for up to 10 years.Results347 men participated with a median follow-up of 7 years, BFFS decreased proportionally with increasing CAPRA-S score and HR 1.13 and 1.65 for intermediate and high risk, respectively. After 10 years, the BFFS and RMST were 68%, 47% and 16% and 9, 7 and 6 years, respectively. The BFFS curves for MRD were not proportional; Group A and B BFFSs were similar up to 5 years, and then, there was an increasing failure in Group B patients After 10 years, the BFFS and RMST were 95%, 57% and 27% and 10, 9 and 6 years respectively. The CAPRA-S score failed to distinguish between Groups A and B, and one-third of high-risk Group C had low-risk CAPRA-S scores. MRD hazard ratios were Group B 1.76 and Group C 4.03.ConclusionsThe MRD prognostic classification was superior to the CAPRA-S score in predicting BFFS and differentiated between early and late BF. The results need to be confirmed in larger studies.

Highlights

  • Radical prostatectomy is a treatment option for clinically localised prostate cancer; approximately 20% of men will develop biochemical failure, defined as two or more consecutive prostate specific antigen (PSA) values of >0.20 ng/mL within 5 years of treatment [1, 2]. 25% of all biochemical recurrences occur between 5 and 10 years post-surgery [3, 4]

  • The minimal residual disease (MRD) prognostic classification was superior to the cancer of the prostate risk assessment score (CAPRA-S) score in predicting biochemical failure-free survival (BFFS) and differentiated between early and late biochemical failure (BF)

  • circulating prostate cell (CPC) were detected in 136 men (39.19%; 95% CI: 34.06– 44.33) and micrometastasis in 150 men (43.23%; 95% CI: 38.02–48.44)

Read more

Summary

Introduction

Radical prostatectomy is a treatment option for clinically localised prostate cancer; approximately 20% of men will develop biochemical failure, defined as two or more consecutive prostate specific antigen (PSA) values of >0.20 ng/mL within 5 years of treatment [1, 2]. 25% of all biochemical recurrences occur between 5 and 10 years post-surgery [3, 4]. After a variable time period, these cancer cells proliferate resulting in an increase in serum PSA levels This micrometastasis, which may be local, near to the prostate bed or distant such as in bone marrow, is termed as minimal residual disease (MRD). The detection of CPC post-prostatectomy when combined with the CAPRA-S score results in a significantly increased discriminative ability in establishing the probability of biochemical failure [10]. The objective of this present study was to establish and compare the predictive value of the CAPRA-S score and the sub-types of MRD to determine the risk of biochemical failure in men who had undergone radical prostatectomy as monotherapy for prostate cancer

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call