Abstract

This paper investigates the capacity problem for some multiple-access scenarios with cooperative transmitters. First, a general Multiple-Access Channel (MAC) with common information, i.e., a scenario where p transmitters send private messages and also a common message to q receivers and each receiver decodes all of the messages, is considered. The capacity region of the discrete memoryless channel is characterized. Then, the general Gaussian fading MAC with common information wherein partial Channel State Information (CSI) is available at the transmitters (CSIT) and perfect CSI is available at the receivers (CSIR) is investigated. A coding theorem is proved for this model that yields an exact characterization of the throughput capacity region. Finally, a two-transmitter/one-receiver Gaussian fading MAC with conferencing encoders with partial CSIT and perfect CSIR is studied and its capacity region is determined. For the Gaussian fading models with CSIR only (transmitters have no access to CSIT), some numerical examples and simulation results are provided for Rayleigh fading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call