Abstract
Compared with planar hyperplane, fitting data on the sphere has been an important and active issue in geoscience, metrology, brain imaging, and so on. In this paper, using a functional approach, we rigorously prove that for given distinct samples on the unit sphere there exists a feed-forward neural network with single hidden layer which can interpolate the samples, and simultaneously near best approximate the target function in continuous function space. Also, by using the relation between spherical positive definite radial basis functions and the basis function on the Euclidean space ℝd + 1, a similar result in a spherical Sobolev space is established. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.