Abstract

The bistatic radar system has been one of the effective methods to detect the space debris in low earth orbit (LEO). Tianlai radio array with cylindrical-parabolic antennas is designed for dark energy detection, which has large field of view and high sensitivity, offering a fan-beam during the observation. We propose a bistatic radar system, which consists of Tianlai radio array and an incoherent scattering radar (ISR) assumed as a transmitter in the Qujing city of China, to detect space debris. In this paper, we calculate and analyze the detection capabilities of this system. The results show the bistatic radar system has the potential to detect small space debris of less than 10 cm in LEO. We provide a space debris detection method to obtain the position of the cross-beam satisfying the observation requirement with the TLE data of the space debris. The method can solve the problem of space synchronization between the radio array and ISR. We used the long-short baseline method of the radio array to locate the space target. The relationship among positioning error, the azimuth and the elevation angle are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.