Abstract

The potential efficacy of cannabinoid receptor ligands for the treatment of epilepsy remains controversial; cannabis components that act via cannabinoid type 1 (CB1) receptors produce anticonvulsant effects in animal models despite treatment with the CB receptor agonist reliably inducing convulsions in various species. Moreover, the potential role of cannabinoid receptor type 2 (CB2) to modulate seizures remains under-investigated. This study assessed the effects of the selective CB2 receptor agonist, AM1241, on pentylenetetrazole (PTZ)-induced seizures in rats. A stereotactically placed guide cannula was surgically implanted into the right lateral ventricle in adult Wistar rats which, 5–6days later, received an acute intracerebroventricular (i.c.v.) microinfusion of AM1241 (0.01, 1 or 10μg/2μl or vehicle) 5min before intraperitoneal (i.p.) injection of PTZ (70mg/kg). Rats were observed for 30min and the seizure severity behavior measured using a modified Racine's scale. Additional groups of rats were pretreated with a single low dose of the selective CB2 receptor antagonist, AM630 (dose 1mg/kg; i.p.), or vehicle, 30min prior to i.c.v. microinfusion of AM1241 (1μg/2μl). AM1241 administration significantly increased tonic-clonic seizure incidence and severity while also decreasing the onset of generalized seizures (AM1241 1 and 10μg/2μl). Pretreatment with AM630 prevented the proconvulsant effects of AM1241. This study shows, for the first time, that selective activation of CB2 receptors can increase generalized seizure susceptibility and suggests that pathological hyperexcitability phenomena can be differentially regulated by targeting CB1 and CB2 receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call