Abstract

Abstract For post-Fukushima nuclear power plants, there has been interested in accident-tolerant fuel (ATF) since it has better tolerant in the event of a severe accident. The fully ceramic microencapsulated (FCM) fuel is one kind of the ATF materials. In this study, the small modular pressurized water reactor (PWR) loading with FCM fuels was investigated, and the modified Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor (CANDLE) burnup strategy was successfully applied to such compact reactor core. To obtain ideal CANDLE shape, it’s necessary to set the infinity or enough length of the core height, but that is impossible for small compact core setting infinity or enough length of the core height. Due to the compact and finite core, the equilibrium state can only be maintained short periods and is not obvious, other than infinitely long active core to reach the long equilibrium state for ideal CANDLE. Consequently, the modified CANDLE shape would be presented. The approximate characteristics of CANDLE burnup are observed in the finite and compact core, and the power density and fuel burnup are selected as main characteristic of modified CANDLE burnup. In this study, firstly, lots of optimization schemes were discussed, and one of optimization schemes was chosen at last to demonstrate the modified CANDLE burnup strategy. Secondly, for chosen compact small rector core, the modified CANDLE burnup strategy is applied and presented. Consequently, the new characteristics of this reactor core can be discovered both in ignition region and in fertile region. The results show that application of CANDLE burnup strategy to small modular PWR loading with FCM fuels suppresses the excess reactivity effectively and reduces the risk of small PWR reactivity-induced accidents during the whole core life, which makes the reactor control more safety and simple.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call