Abstract

Invasive breast carcinomas (BRCAs) are highly lethal. The molecular mechanisms underlying progression of invasive BRCAs are unclear, and effective therapies are highly desired. The cancer-testis antigen CT45A1 promotes overexpression of pro-metastatic sulfatase-2 (SULF2) and breast cancer metastasis to the lungs, but its mechanisms are largely unknown. In this study, we aimed to elucidate the mechanism of CT45A1-induced SULF2 overexpression and provide evidence for targeting CT45A1 and SULF2 for breast cancer therapy. The effect of CT45A1 on SULF2 expression was assessed using reverse transcription polymerase chain reaction and western blot. The mechanism of CT45A1-induced SULF2 gene transcription was studied using protein-DNA binding assay and a luciferase activity reporter system. The interaction between CT45A1 and SP1 proteins was assessed using immunoprecipitation and western blot. Additionally, the suppression of breast cancer cell motility by SP1 and SULF2 inhibitors was measured using cell migration and invasion assays. CT45A1 and SULF2 are aberrantly overexpressed in patients with BRCA; importantly, overexpression of CT45A1 is closely associated with poor prognosis. Mechanistically, gene promoter demethylation results in overexpression of both CT45A1 and SULF2. CT45A1 binds directly to the core sequence GCCCCC in the promoter region of SULF2 gene and activates the promoter. Additionally, CT45A1 interacts with the oncogenic master transcription factor SP1 to drive SULF2 gene transcription. Interestingly, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenicity. Overexpression of CT45A1 is associated with poor prognosis in patients with BRCA. CT45A1 promotes SULF2 overexpression by activating the promoter and interacting with SP1. Additionally, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenesis. Our findings provide new insight into the mechanisms of breast cancer metastasis and highlight CT45A1 and SULF2 as sensible targets for developing novel therapeutics against metastatic breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.