Abstract

Repeated hydrographic casts, mooring time series and satellite sea surface temperature collected during the CANALES experiment (1996–98) are used to describe the thermohaline circulation in the Balearic Channels (western Mediterranean) and to analyze its variability. Mass transports are estimated by inverse calculations. The role played by each channel in the meridional water exchange is clarified: the Ibiza Channel funnels southward cool, saline, northern waters whereas the Mallorca Channel appears as the preferred route for the northward progression of warm, fresh, southern waters. A neat interannual trend is revealed by the continuous decrease of the amount of Western Mediterranean Intermediate Waters (WIW) brought by the Northern Current, reflecting the increase in temperature of the winter mixed layer in the northern Mediterranean that occurred each year between 1996 and 1998. A clear seasonal signal was also seen in the transport of the Northern Current which decreased from 1 to 1.4 Sv in winter to < 0.5 Sv in summer. The current intensified again in fall. A number of mesoscale eddies, from 20 to 70 km in size, most of them anticyclonic vortex eddies were brought by the unstable Northern Current, these eddies strongly perturbed the water exchange in the Ibiza Channel forcing retroflections of northern waters back to the north-east into the Balearic Current. These eddies either stayed stalled for several months in the Gulf of Valencia to the north of the channel, or were slowly funnelled southward through the channel narrows. A decreasing trend was observed in the mesoscale activity of the Northern Current between 1996 and 1998. Conversely, large, anticyclonic eddies, 150-km diameter, progressively invaded the Algerian Basin to the south of the channels in 1997–98 and forcing northward inflows (up to 0.75 Sv) of fresh and warm waters of Atlantic origin (AW) into the Mallorca Channel. The marked interannual differences observed in both northern and southern eddy activity may be linked to the interannual variability of the large scale thermohaline circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.