Abstract
Summary The Cameroon line is the only known intra-plate alkaline volcanic province which straddles a continental margin. It consists of a chain of Tertiary to Recent volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. It therefore provides a unique area in which to study the differences, if any, between the suboceanic and sub-continental mantle sources for alkali basalt. Although the Cameroon line does not have a graben structure, its origin is closely linked to that of the nearby Benue rift. Geochemical and isotopic data show no significant differences between basaltic rocks in the continental and oceanic sectors. However, the more evolved rocks in the two sectors are quite distinct. The continental magmas evolve towards peralkaline rhyolite, whereas those in the oceanic sector evolve towards phonolite. Progressive crustal contamination of the continental magmas accompanied by crystal fractionation is required to explain this distinction. The striking geochemical similarity between basaltic rocks in the two sectors implies that their parental magmas had very similar mantle sources. This source must lie in the asthenosphere. The old lithosphere mantle beneath Africa will be chemically and isotopically different from the young Atlantic Ocean lithosphere mantle and its involvement would be readily detected in the geochemistry of the basalts. Recent models of intra-plate alkaline magma genesis have stressed the importance of metasomatic enrichment of the mantle in large-ion lithophile elements (LILE) as a precursor to magmatism. Evidence for mantle metasomatism is provided by lithosphere-derived mantle xenoliths. Since the lithosphere is the only place where large domains of enriched mantle are likely to be preserved for long periods, it follows that the Cameroon line magmas could not have had a metasomatically enriched lithosphere source. The Cameroon line alkali basalts are chemically and isotopically similar to most other intra-plate (e.g. ocean island and continental rift) basalts which may also, therefore, have an asthenosphere rather than a metasomatized lithosphere source. The asthenosphere is also the source for mid-ocean ridge basalts (MORB) and must have a bulk composition depleted in LILE. Isotopic differences between MORB and intra-plate basalts require this source to be heterogeneous. The Cameroon line and most other intra-plate alkali basalts can be generated by small-degree melting (less than 1%) of a LILE-depleted MORB mantle source containing LILE-rich streaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.