Abstract

This paper presents a methodology for deriving best statistics for the calibration of spatial interaction models, and several procedures for finding best parameter values are described. The family of spatial interaction models due to Wilson is first outlined, and then some existing calibration methods are briefly reviewed. A procedure for deriving best statistics based on the principle of maximum-likelihood is then developed from the work of Hyman and Evans, and the methodology is illustrated using the example of a retail gravity model. Five methods for solving the maximum-likelihood equations are outlined: procedures based on a simple first-order iterative process, the Newton—Raphson method for several variables, multivariate Fibonacci search, search using the Simplex method, and search based on quadratic convergence, are all tested and compared. It appears that the Newton—Raphson method is the most efficient, and this is further tested in the calibration of disaggregated residential location models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.