Abstract
Airborne array tomographic synthetic aperture radar (TomoSAR) can acquire three-dimensional (3D) information of the observed scene in a single pass. In the process of airborne array TomoSAR data imaging, due to the disturbance of factors such as inconsistent antenna patterns and baseline errors, there are spatially varying amplitude-phase inconsistency errors in the multi-channel Single-Look-Complex (SLC) images. The existence of the errors degrades the quality of the 3D imaging results, which suffer from positioning errors, stray points, and spurious targets. In this paper, a new calibration method based on multiple prominent points is proposed to calibrate the errors of amplitude-phase inconsistency. Firstly, the prominent points are selected from the multi-channel SLC data. Then, the subspace decomposition method and maximum interference spectrum method are used to extract the multi-channel amplitude-phase inconsistency information at each point. The last step is to fit the varying curve and to compensate for the errors. The performance of the method is verified using actual data. The experimental results show that compared with the traditional fixed amplitude-phase inconsistency calibration method, the proposed method can effectively calibrate spatially varying amplitude-phase inconsistency errors, thus improving on the accuracy of 3D reconstruction results for large-scale scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.