Abstract
End-to-end delay is one of the key characteristics of communication network performance. This characteristic determines the possibility of using the network for various delay-critical applications like voice or video transmission. One of the widely used approaches to estimating delays is the use of the queuing theory. According to this approach, a telecommunication network is modeled using a multiphase queuing system. Communication channels are modeled using service devices, and the incoming traffic is modeled with random distributions of the inter-arrival intervals between packets. The accuracy of this network model directly depends on how well the service time distributions are chosen. These distributions must consider the specifics of complex telecommunication protocols, size distributions of the transmitted packets, and, in case of wireless channels, the rate of collisions and retransmissions. The paper presents a study of the accuracy of estimates of end-to-end delays in a multi-hop wireless network using a queuing network with a phase-type (PH) service time distributions. To calibrate the model, PH distributions are found using the moments-matching method based on sample data on the duration of packet transmission in IEEE 802.11 channels. This sample data was obtained using a simulation model written in NS-3, taking into account the features of the IEEE 802.11 protocol and the presence of collisions in the network. To evaluate the accuracy, end-to-end delays are calculated using the queuing network and the wireless network simulation model. It is shown that it is possible to obtain reasonably accurate estimates for small networks, but with an increase in the size of the network, the accuracy decreases. In conclusion, recommendations are given to improve the accuracy of modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.