Abstract
AbstractThe natural boundary integral equation (NBIE) is developed to calculate potential derivatives for potential problems with anisotropic media. Firstly, the governing equation of the two-dimensional anisotropic potential problem is transformed into standard Laplace equation by a coordinate transformation method. Then a potential derivative boundary integral equation named as NBIE is extended to solve the anisotropic potential problem. The most important virtue of the NBIE is that the singularity of the integral kernel function is reduced by one order in comparison with the conventional potential derivative boundary integral equation(CDBIE). Therefore the new potential derivative boundary integral equation only contains strongly singular integrals rather than hyper-singular integrals. Thus the NBIE can calculate more accurate potential derivative results for both boundary nodes and interior points. Moreover, in combination with the analytical integral regularization algorithm of nearly singular integrals, the NBIE can obtain more accurate potential derivatives of interior points very close to the boundary than the CDBIE. Numerical examples on heat conduction in anisotropic media demonstrate the accuracy and efficiency of the NBIE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.