Abstract

The analysis of the system of the gravity dam-reservoir-foundation is calculated using the Scaled Boundary Finite Element Method (SBFEM). The unbounded foundation is modeled by a high-order transmitting boundary based on the continued-fraction solution of the dynamic-stiffness matrix. The coefficient matrices of the continued fraction are evaluated recursively through the scaled boundary finite element equation in dynamic stiffness. The convergence of the high-order transmitting boundary is demonstrated by the numerical examples. Comparisons with the analytical solutions show that the method possesses high accuracy. The results are compared with the mass-less base model. In conclusion, the approach is effective and suitable for the large-scale structure-foundation interaction analysis in frequency domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.