Abstract

Spiders are natural specialists in fiber processing. In particular, cribellate spiders manifest this ability as they produce a wool of nanofibers to capture prey. During its production they deploy a sophisticated movement of their spinnerets to darn in the fibers as well as a comb-like row of setae, termed calamistrum, on the metatarsus which plays a key role in nanofiber processing. In comparison to the elaborate nanofiber extraction and handling process by the spider's calamistrum, the human endeavors of spinning and handling of artificial nanofibers is still a primitive technical process. An implementation of biomimetics in spinning technology could lead to new materials and applications. Despite the general progress in related fields of nanoscience, the expected leap forward in spinning technology depends on a better understanding of the specific shapes and surfaces that control the forces at the nanoscale and that are involved in the mechanical processing of the nanofibers, respectively. In this study, the authors investigated the morphology of the calamistrum of the cribellate spider Uloborus plumipes. Focused ion beam and scanning electron microscopy tomography provided a good image contrast and the best trade-off between investigation volume and spatial resolution. A comprehensive three-dimensional model is presented and the putative role of the calamistrum in nanofiber processing is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.