Abstract
The mining district of southwest Sardinia, Italy, is one of the classic areas where primary carbonate-hosted Zn-Pb sulfide ores are associated with a relatively thick secondary oxidation zone containing Zn (hydroxy-)carbonates and silicates, the so-called calamine, exploited until the 1970s. The extent of the capping oxidized ore zones, reaching deep below the surface, is generally independent of the present-day water table. The base of the oxidation profile containing nonsulfide Zn minerals in various uplifted blocks in the Iglesiente area can be both elevated above or submerged below the recent water table. The genesis of the ores is therefore considered to be related to fossil, locally reactivated, oxidation phenomena. The mineralogy of the nonsulfide mineralization is generally complex and consists of smithsonite, hydrozincite, and hemimorphite as the main economic minerals, accompanied by iron and manganese oxy-hydroxides and residual clays. This study places the secondary ores in the context of the tectonostratigraphic and climatic evolution of Sardinia and includes a petrographic and mineralogic study of the most abundant minerals, relating the mineralogy of secondary Zn and Pb carbonates to their stable C and O isotope geochemistry and constraining the origin of the oxidizing fluids and the temperature of mineralization. The δ 18 O VSMOW values of smithsonite are homogeneous, regardless of crystal morphology, position, and mine location (avg. 27.4 ± 0.9‰). This homogeneity points to a relatively uniform isotopic composition of the oxidation fluid and corresponding formation temperatures of 20° to 35°C. Considering the karstic environment of smithsonite formation in southwest Sardinia, this high temperature could be due to heat release during sulfide oxidation. The carbon isotope compositions of secondary Zn carbonates display considerable variations of more than 9 per mil ( δ 13 C VPDB from –0.6 to –10.4‰). This large range indicates participation of variable amounts of reduced organic and marine carbonate carbon during sulfide oxidation. The isotopic variation can be related to a variation in crystal morphologies of smithsonite, reflecting different environments of formation with respect to water table oscillations in karstic environments (upper to lower vadose to epiphreatic). The same range in δ 13 C isotope values is displayed by the calcite associated with Zn carbonates and by recent speleothems. The most reliable time span for the deposition of bulk calamine ore in southwest Sardinia ranges from middle Eocene to Plio-Pleistocene, although further multiple reactivation of the weathering profiles, peaking within the warm interglacial periods of the Quaternary, cannot be excluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.