Abstract
1. Isolated, Langendorff-perfused rat hearts, isolated membranes, and pharmacological and receptor binding techniques were used to study the properties of the newly developed verapamil derivative, anipamil. 2. When added acutely to isolated, spontaneously beating or electrically paced hearts, anipamil (0.01-0.15 microM) exerted a dose-dependent negative inotropic effect which developed slowly and persisted after 60 min washout. 3. When added acutely (0.05-0.1 microM) to isolated hearts, or when given intravenously (2 mg kg-1 body weight 1 h before the animals were killed), anipamil displaced the dose-response curves for the positive inotropic effect of (0.10-3.0 mM) Ca2+ and (10-50 nM) Bay K 8644 to the right. 4. When added to freshly isolated cardiac membranes, 0.1 microM anipamil increased the dissociation constant (KD) of the phenylalkylamine (-)-[3H]-desmethoxyverapamil ((-)-[3H]-D888) from 1.22 +/- 0.2 to 2.91 +/- 0.46 nM, without any significant change in density (Bmax; control: 163 +/- 17; anipamil: 117 +/- 20 fmol mg-1 protein). Bound (-)-[3H]-D888 was displaceable by (-)-D888 (Ki 1.7 +/- 0.4 nM) greater than (-)-D600 (Ki 12 +/- 0.5 nM) greater than verapamil (Ki 55 +/- 11 nM) greater than (+)-D600 (Ki 108 +/- 12.2) greater than anipamil (Ki 471 +/- 52 nM). 5. In cardiac membranes isolated from rats pretreated with anipamil (2 mg kg-1 i.v.) 1h before they were killed, the KD of (-)-[3H]-D888 binding was increased (P less than 0.05) from 1.59 +/- 0.18 to 3.28 +/-0.65 nM with no significant change in density, compared to the placebo-treated (control) rats. 6. These results establish that anipamil interacts in a competitive manner with the phenylalkylamine binding sites in cardiac membranes, and that it resembles other Ca2+ antagonists in displacing the dose-response curve for the positive inotropic effect of Ca2+ to the right. The results also show that although anipamil binds tightly to the cardiac membranes, it binds to the (-)-[3H]-D888 recognition sites less potently than (-)-D888, (-)-D600 or verapamil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.