Abstract

Unlike other C6 zinc cluster proteins such as GAL4 and PPR1, HAP1 binds selectively to asymmetric DNA sites containing a direct repeat of two CGG triplets. Here, we show that the HAP1 zinc cluster is solely responsible for asymmetric binding by HAP1. An asymmetric interaction between two zinc clusters of a HAP1 dimer must position the zinc clusters in a directly repeated orientation, and enable them to recognize two CGG triplets in a direct repeat. Further, our data suggest that this asymmetric interaction acts cooperatively with the interaction between dimerization elements to promote HAP1 dimerization, and locks HAP1-DNA complexes in a stable, dimeric conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.