Abstract

Complement protein C3 is crucial for immune responses in mucosal sites such as the lung, where it aids in microbe elimination and enhances inflammation. While trained immunity - enhanced secondary responses of innate immune cells after prior exposure - is well-studied, the role of the complement system in trained immune responses remains unclear. We investigated the role of C3 in trained immunity and found that in vivo , trained wild-type mice showed significantly elevated pro-inflammatory cytokines and increased C3a levels upon a second stimulus, whereas C3-deficient mice exhibited a blunted cytokine response and heightened evidence of lung injury. Ex vivo , C3-deficient alveolar macrophages (AMs) displayed reduced chemokine and cytokine output after training, which was restored by exogenous C3 but not by C3a. Inhibiting C3aR, both pharmacologically and with a genetic C3aR knockout, prevented this restoration, indicating the necessity of C3aR engagement. Mechanistically, trained WT AMs demonstrated enhanced glycolytic activity compared to C3-deficient AMs - a defect corrected by exogenous C3 in a C3aR-dependent manner. These findings reveal that C3 modulates trained immunity in AMs through C3aR signaling, affecting cytokine production and metabolic reprogramming, and highlight a novel role for C3 in trained immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.