Abstract

A plant-like cryptochrome of diatom microalgae, CryP, acts as a photoreceptor involved in transcriptional regulation. It contains FAD and 5,10-methenyltetrahydrofolate as chromophores. Here, we demonstrate that the unstructured C-terminal extension (CTE) of CryP has an influence on the redox state of the flavin. In CryP lacking the CTE, the flavin is in the oxidized state (FADox), whereas it is a neutral radical (FADH•) in the full-length protein. When the CTE of CryP is coupled to another diatom cryptochrome that naturally binds FADox, this chimera also binds FADH•. In full-length CryP, FADH• is the most stable redox state and oxidation to FADox is extremely slow, whereas reduction to FADH2 is reversible in the dark in approximately 1h. We also identified novel interaction partners of this algal CRY and characterized two of them in depth regarding their binding activities. BolA, a putative transcription factor, binds to monomeric and to dimeric CryP via the CTE, independent of the redox state of the flavin. In contrast, an unknown protein, ID42612, which occurs solely in heterokont algae, binds only to CryP dimers. This binding is independent of the CTE and shows slight differences in strength depending on the flavin's redox state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.