Abstract

The plasma membrane serotonin transporter (SERT) has an important role in terminating serotonergic neurotransmission by re-uptake of 5-HT from the synaptic cleft. The expression of SERT on the cell surface is therefore a critical factor. In this study, we examined the role of the carboxyl terminus of SERT in trafficking to the plasma membrane. 5-HT uptake activity was used to measure the effects of systematic deletions or alanine substitutions in the C-terminus. We found that deletion of 16 amino acids in the distal C-terminus had no effect on uptake activity, whereas further deletion was detrimental for the function of SERT. Cell surface biotinylation was used to determine the role of the C-terminus in localization and trafficking. We showed that the C-terminus is crucial for the delivery of SERT to the plasma membrane and that the deletion of this part of the transporter results in a lack of mature glycosylation and impaired trafficking to the plasma membrane. Furthermore, the C-terminally truncated mutants were shown to have a dominant negative effect on wild-type SERT uptake activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call