Abstract

Objectives Interstitial fibrosis is a critical pathologic change in chronic allograft nephropathy. The cytokine connective tissue growth factor (CTGF, also CCN2) plays an important role in epithelial-mesenchymal transformation (EMT) of tubular epithelial cells to renal interstitial fibrosis. The hexadeca-peptide within the C-terminal of CTGF (named P2) contains the unique binding domain of CTGF to its potential receptor, integrin αvβ3. This study examined whether P2 bound preferentially to the receptor and served as an inhibitor of CTGF. Methods All studies used an established rat kidney tubular epithelial cell line NRK-52E. Chemically synthesized P2 was purified, and some of it labeled with FITC. The affinity of CTGF or P2 to NRK-52E cells was examined by a solid-phase cell adhesion assay. Competitive binding between P2 and CTGF to NRK-52E cells was examined with flow cytometric analysis. Results Both P2 and CTGF bound to the NRK-52E cells, mediating cell adhesion. When the cells were incubated in the mixture of P2 and CTGF, P2 bound to the cells preferentially. Furthermore, when cells were preincubated with excessive CTGF, it became difficult for subsequent P2 binding to occur. Conclusions P2 and CTGF seemed to bind to cell membranes at the same binding domain. P2 competitively blocked CTGF binding, acting as a CTGF inhibitor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.