Abstract

Human immunodeficiency virus type-1 (HIV-1) requires the packaging of human tRNALys3 as a primer for effective viral reverse transcription. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) suppresses the packaging efficiency of tRNALys3. Although the binding of GAPDH to Pr55gag is important for the suppression mechanism, it remains unclear which domain of GAPDH is responsible for the interaction with Pr55gag. In this study, we show that Asp256, Lys260, Lys263 and Glu267 of GAPDH are important for the suppression of tRNALys3 packaging. Yeast two-hybrid analysis demonstrated that the C-terminal domain of GAPDH (151–335) interacts with both the matrix region (MA; 1–132) and capsid N-terminal domain (CA-NTD; 133–282). The D256R, K263E or E267R mutation of GAPDH led to the loss of the ability to bind to wild-type (WT) MA, and the D256R/K260E double mutation of GAPDH resulted in the loss of detectable binding activity to WT CA-NTD. In contrast, R58E, Q59A or Q63A of MA, and E76R or R82E of CA-NTD abrogated the interaction with the C-terminal domain of GAPDH. Multiple-substituted GAPDH mutant (D256R/K260E/K263E/E267R) retained the oligomeric formation with WT GAPDH in HIV-1 producing cells, but the incorporation level of the hetero-oligomer was decreased in viral particles. Furthermore, the viruses produced from cells expressing the D256R/K260E/K263E/E267R mutant restored tRNALys3 packaging efficiency because the mutant exerted a dominant negative effect by preventing WT GAPDH from binding to MA and CA-NTD and improved the reverse transcription. These findings indicate that the amino acids Asp256, Lys260, Lys263 and Glu267 of GAPDH is essential for the mechanism of tRNALys3-packaging suppression and the D256R/K260E/K263E/E267R mutant of GAPDH acts in a dominant negative manner to suppress tRNALys3 packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call