Abstract

The E2F1 transcription factor, which was originally identified as a cell-cycle initiator, mediates apoptosis in response to DNA damage. As E2F1-induced apoptosis is an attractive mechanism for cancer therapy, it is critical to fully elucidate its effector pathways. Here, we show that the c-MYC-interacting proapoptotic tumor suppressor, BIN1, is transcriptionally activated by E2F1 and mediates E2F1-induced apoptosis in response to DNA damage. Acting through the DNA-binding and transactivation domains, ectopically expressed E2F1 activated the human BIN1 promoter, which contains canonical E2F-recognition sites. Conversely, depletion of E2F1 by small interfering RNA or germline deletion led to BIN1 deficiency. DNA-damaging agents (which included etoposide) increased BIN1 levels, unless E2F1 was deficient. Moreover, endogenous E2F1 protein interacted directly with the BIN1 gene promoter in chromatin, particularly after etoposide treatment. Notably, suppression of BIN1 expression using an antisense (AS) technique attenuated the cell death mediated by E2F1 and etoposide. Although the p53 tumor suppressor, its sibling protein p73, and caspases are well-known E2F1 effectors for DNA damage-induced apoptosis, AS-BIN1 did not compromise their apoptotic functions. Our results collectively suggest that BIN1 is a novel transcriptional target of E2F1 that triggers a unique mode of cell death in response to DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.