Abstract

Septins have been shown to play important roles in cytokinesis in diverse organisms ranging from yeast to mammals. In this study, we show that both the unc-59 and unc-61 loci encode Caenorhabditis elegans septins. Genomic database searches indicate that unc-59 and unc-61 are probably the only septin genes in the C. elegans genome. UNC-59 and UNC-61 localize to the leading edge of cleavage furrows and eventually reside at the midbody. Analysis of unc-59 and unc-61 mutants revealed that each septin requires the presence of the other for localization to the cytokinetic furrow. Surprisingly, unc-59 and unc-61 mutants generally have normal embryonic development; however, defects were observed in post-embryonic development affecting the morphogenesis of the vulva, male tail, gonad, and sensory neurons. These defects can be at least partially attributed to failures in post-embryonic cytokineses although our data also suggest other possible roles for septins. unc-59 and unc-61 double mutants show similar defects to each of the single mutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call