Abstract

Studies of C/EBPbeta-deficient mice have demonstrated a pivotal role for this transcription factor in hematopoiesis, adipogenesis, and ovarian function. Here we show that C/EBPbeta is also essential for normal development and function of the mammary gland. Ductal morphogenesis in virgin C/EBPbeta-deficient mice was disrupted, with ducts displaying reduced growth and branching. To distinguish whether the effect of C/EBPbeta deficiency on mammary epithelium is indirect or cell autonomous, we performed ovarian and mammary gland transplants. Transplants of wild-type ovaries into mutant females partially restored ductal morphogenesis during puberty but failed to support mammopoiesis during pregnancy. At term, mutant mice harboring wild-type ovaries exhibited reduced alveolar proliferation and impaired epithelial cell differentiation, including a complete absence of milk protein expression. Mammary gland transplant experiments demonstrated that development of C/EBPbeta-deficient epithelium was defective within a wild-type stroma and host background. Cell proliferation during pregnancy was reduced and differentiation, as measured by the activity of milk protein genes, was inhibited. However, wild-type epithelium developed in a C/EBPbeta-deficient stroma. Thus, C/EBPbeta plays an essential, cell autonomous role in the proliferation and differentiation of mammary secretory epithelial cells and is required for the activation of milk protein genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call