Abstract
AbstractWe investigate the representation theory of the crossed–product C*–algebra associated with a compact group G acting on a locally compact space X when the stability subgroups vary discontinuously. Our main result applies when G has a principal stability subgroup or X is locally of finite G–orbit type. Then the upper multiplicity of the representation of the crossed product induced from an irreducible representation V of a stability subgroup is obtained by restricting V to a certain closed subgroup of the stability subgroup and taking the maximum of the multiplicities of the irreducible summands occurring in the restriction of V. As a corollary we obtain that when the trivial subgroup is a principal stability subgroup; the crossed product is a Fell algebra if and only if every stability subgroup is abelian. A second corollary is that the C*–algebra of the motion group ℝn ⋊ SO(n) is a Fell algebra. This uses the classical branching theorem for the special orthogonal group SO(n) with respect to SO(n − 1). Since proper transformation groups are locally induced from the actions of compact groups, we describe how some of our results can be extended to transformation groups that are locally proper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.