Abstract
Nitrite toxicity poses a significant threat to aquatic organisms, including largemouth bass (LMB) and Micropterus salmoides. This study aimed to elucidate the role of bZIP transcription factors in mediating the molecular responses to nitrite stress in the LMB spleen. We identified 120 bZIP genes in the LMB genome using bioinformatics analysis and divided them into 11 subgroups based on phylogenetic relationships. Under nitrite stress, the bZIP_XI subgroup was upregulated, suggesting the activation of the stress response in the LMB spleen. Cellular pathway analysis revealed enrichment of pathways related to stress response, DNA repair, apoptosis, and autophagy. Co-expression network analysis highlighted bZIP_XI members such as msabZIP_49, msabZIP_12, msabZIP_39, and msabZIP_116 as potential key regulators. These transcription factors likely modulated the expression of stress-related genes like VCAM1, POLE3, and BMP1. Conserved binding motifs in the promoters of these genes may support regulation by bZIP_XI. Furthermore, bZIP_XI members correlated with immune cell infiltration in the spleen, potentially regulating immune-related genes like BCL2L1 and SELE. Homologs of bZIP_XI in other fish species exhibited similar expression patterns under stress. Overall, this study implicates the bZIP transcription factor family, notably the bZIP_XI subgroup, in orchestrating the molecular response of the LMB spleen to nitrite toxicity by regulating stress response pathways and immune function. These findings provide insights into nitrite stress adaptation in fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.