Abstract
We report here that the bzd genes for anaerobic benzoate degradation in Azoarcus sp. strain CIB are organized as two transcriptional units, i.e., a benzoate-inducible catabolic operon, bzdNOPQMSTUVWXYZA, and a gene, bzdR, encoding a putative transcriptional regulator. The last gene of the catabolic operon, bzdA, has been expressed in Escherichia coli and encodes the benzoate-coenzyme A (CoA) ligase that catalyzes the first step in the benzoate degradation pathway. The BzdA enzyme is able to activate a wider range of aromatic compounds than that reported for other previously characterized benzoate-CoA ligases. The reduction of benzoyl-CoA to a nonaromatic cyclic intermediate is carried out by a benzoyl-CoA reductase (bzdNOPQ gene products) detected in Azoarcus sp. strain CIB extracts. The bzdW, bzdX, and bzdY gene products show significant similarity to the hydratase, dehydrogenase, and ring-cleavage hydrolase that act sequentially on the product of the benzoyl-CoA reductase in the benzoate catabolic pathway of Thauera aromatica. Benzoate-CoA ligase assays and transcriptional analyses based on lacZ-reporter fusions revealed that benzoate degradation in Azoarcus sp. strain CIB is subject to carbon catabolite repression by some organic acids, indicating the existence of a physiological control that connects the expression of the bzd genes to the metabolic status of the cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.