Abstract
The reaction mechanism and kinetics of the butoxylation of dodecylamine were investigated experimentally using a semi-batch, fully liquid process at temperatures ranging from 120 °C to 150 °C and varying stoichiometric ratios of the reactants. In addition, the catalytic effect of adding 1–3%mol of twelve different functional organic species containing hydroxyl, aldehyde, amine, and/or amide functional groups was studied. It was found that only proton donating groups increase the observed reaction rate. In particular hydroxyl groups in combination with an amine group resulted in a strong acceleration of the reaction. Since the reaction intermediates mono-and dibutoxylated amines have this combination, an auto-catalytic reaction mechanism and corresponding rate law are proposed. The kinetic constants were fitted to the experimental data as a function of temperature, following an Arrhenius type of dependency. The results from the model describe the experimental data with 95% accuracy. Moreover, the results show that the butoxylation of dodecylamine, as a model reactant for a short substituted ethylene oxide, with fatty amines, follows the same mechanism and has similar kinetics as epoxide hardening reactions with amines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.