Abstract

We studied the architecture of the burrow system of the African ice rat Otomys sloggetti robertsi, a non–hibernating, diurnal murid rodent endemic to the sub–alpine and alpine regions of the southern African Drakensberg and Maluti mountains. In our study site we found ice rat burrows in two substrates (organic and mineral soils). The structure of the burrow system was similar in both soil types, comprising several interlinking tunnels, numerous burrow entrances and 1–2 nest chambers. However, the surface area of the burrow systems in organic soils was larger, the tunnels were deeper, and some of the systems contained two levels, all of which was contrary to our assumption that digging would be more difficult in the compact organic soils. Ice rats occur in colonies of up to 17 individuals, and the collected efforts of several individuals are required for constructing complex burrow systems. The burrow structure is similar to those of two arid–adapted relatives, Parotomys brantsii and Parotomys littledalei, suggesting that the burrow architecture among these three taxa may reflect the similar functions of burrows in extreme environments. For ice rats, burrows could provide a suitable microhabitat in which to escape adverse environmental conditions, particularly during winter. Moreover, ice rat burrows contained far fewer nest chambers than those of both Parotomys species, indicating that members in a colony share nest chambers, thereby facilitating huddling. Finally, the extensive interlinking tunnels may provide underground routes to aboveground feeding sites, thereby reducing exposure to adverse conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call