Abstract
Graph burning is a discrete time process which can be used to model the spread of social contagion. One is initially given a graph of unburned vertices. At each round (time step), one vertex is burned; unburned vertices with at least one burned neighbour from the previous round also becomes burned. The burning number of a graph is the fewest number of rounds required to burn the graph. It has been conjectured that for a graph on n vertices, the burning number is at most ⌈n⌉\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lceil \\sqrt{n}\\rceil $$\\end{document}. We show that the graph burning conjecture is true for trees without degree-2 vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.