Abstract

The burn-in test scheduling problem (BTSP) is a variation of the complex batch processing machine scheduling problem, which is also a generalisation of the liquid crystal injection scheduling problem with incompatible product families and classical identical parallel machine problem. In the case we investigated on the BTSP, the jobs are clustered by their product families. The product families can be clustered by different product groups. In the same product group, jobs with different product families can be processed as a batch. The batch processing time is dependent on the longest processing time of those jobs in that batch. Setup times between two consecutive batches of different product groups on the same batch machine are sequentially dependent. In addition, the unequal ready times are considered in the BTSP which involves the decisions of batch formation and batch scheduling in order to minimise the total machine workload without violating due dates and the limited machine capacity restrictions. Since the BTSP involves constraints on unequal ready time, batch dependent processing time, and sequence dependent setup times, it is more difficult to solve than the classical parallel batch processing machine scheduling problem with compatible product families or incompatible product families. These restrictions mean that the existing methods cannot be applied into real-world factories directly. Consequently, this paper proposes a mixed integer programming model to solve the BTSP exactly. In addition, two efficient solution procedures which solve the BTSP are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.