Abstract

BackgroundUrea cycle disorders (UCD) are inborn errors of metabolism, typically presenting neonatally. Excess ammonia builds rapidly within the body risking hyperammonemic episodes and potentially death. Long-term management of the condition includes restrictive protein consumption, pharmacological interventions and, in extreme cases, liver transplantation. Pharmacological treatments such as sodium benzoate and sodium phenylbutyrate have proven effective but not without a multitude of negative attributes including poor taste, higher dosage and associated gastrointestinal discomfort that impacts health-related quality of life. Glycerol phenylbutyrate (GPB) has recently become a widely available pharmacological treatment with early reports of improved qualities, including taste and administration method. The following study aims to explore the burden of pharmacological treatment and the effects of the transition to GPB on health-related quality of life in people with a UCD.ResultsNine carers of children living with a UCD (mean age = 12.44, SD = 10.26) were interviewed regarding their experiences of pharmacological treatment in relation to their, and their child’s, health-related quality of life after transitioning to GPB. Three main themes were identified: psychological health, physical health and social participation. Carers struggled with anxiety surrounding their child’s condition and the battle of administering medication. Medication administration was perceived to have improved since the transition to GPB, alleviating distress for both carer and child. Issues involving school were described, ranging from difficulties integrating their child into mainstream schooling and the impact of treatment on participation in school and extracurricular activities. Carers encountered issues sourcing syringes to administer GPB, which induced stress. It could be suggested that some burden had been relieved by the transition to GPB. However, it appeared that difficulties associated with the illness would persist despite treatment, owing to the continuing nature of the condition.ConclusionsAdhering to a strict pharmacological regime caused immense stress for both carers and children, severely impacting on typical social activities such as eating at a restaurant or going on holiday. GPB was perceived to have alleviated some burden in terms of administration given improved characteristics concerning taste and dosage, important characteristics for both carers and children living with UCD. Practitioners should consider these findings when making clinical decisions for children with UCD and the effect of pharmacological treatment on carer’s health-related quality of life. Outreach work to facilitate greater understanding of the condition should be conducted with key locations, such as children’s schools. This would also help to alleviate carer burden.

Highlights

  • Urea cycle disorders (UCD) are inborn errors of metabolism, typically presenting neonatally

  • This study aims to explore the burden of pharmacological treatment and the effects of the transition to Glycerol phenylbutyrate (GPB) on health-related quality of life (HrQoL) in people with a UCD

  • All participants were carers for a child living with UCD

Read more

Summary

Introduction

Urea cycle disorders (UCD) are inborn errors of metabolism, typically presenting neonatally. Long-term management of the condition includes restrictive protein consumption, pharmacological interventions and, in extreme cases, liver transplantation. Pharmacological treatments such as sodium benzoate and sodium phenylbutyrate have proven effective but not without a multitude of negative attributes including poor taste, higher dosage and associated gastrointestinal discomfort that impacts health-related quality of life. In people with a UCD, this does not happen and as a consequence, they face rapidly increasing ammonia levels that can be devastating to the body. Over half of clinicians would target > 50 μmol/L as a manageable ammonia level for UCD patients [2], where a normal reference range is typically ≤ 100 μmol/L for neonates and ≤ 50 μmol/L beyond the neonatal period [3]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call