Abstract
Telomere length regulation is essential for cell viability in eukaryotes. While many pathways that affect telomere length are known, we do not yet have a complete understanding of the mechanism of length regulation. To identify new pathways that might regulate telomere length, we carried out a genetic screen in yeast and identified the cyclin‐dependent kinase complex Bur1/2 as a regulator of telomere length. Mutations in either BUR1 cyclin‐dependent kinase or the associated BUR2 cyclin resulted in short telomeres. This regulation did not function through the known role of BUR1 in regulating histone modification as bur1∆ set2∆ and bur2∆ set2∆ double mutants rescued cell growth but did not rescue the telomere shortening effects. We found that both bur1∆ and bur2∆ set2∆ were also defective in de novo telomere addition, and deletion of SET2 did also not rescue this elongation defect. The Bur1/2 cyclin‐dependent kinase regulates transcription of many genes. We found that TLC1 RNA levels were reduced in bur2∆ set2∆ mutants; however, overexpression of TLC1 restored the transcript levels but did not restore de novo telomere elongation or telomere length. These data suggest that the Bur1/2 kinase plays a role in telomere elongation separate from its role in transcription of telomerase components. Dissecting the role of the Bur1/2 kinase pathway at telomeres will help complete our understanding of the complex network of telomere length regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Yeast
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.