Abstract

Comprehensive study of the bulk generation-recombination mechanisms and the carrier lifetime in long wavelength and mid wavelength infrared indium-doped as well as arsenic- and mercury vacancies-doped HgCdTe ternary alloys at liquid nitrogen temperature has been done. The excess minority carrier lifetime in HgCdTe materials has been calculated by solving the set of non-linear transport equations under conditions of small deviation from equilibrium. The results of numerical calculations of the carrier lifetime determined by the Auger 1, Auger 7, and Shockley-Read-Hall mechanisms related to mercury vacancies have been compared with experimental data available in the literature. We re-examine the carrier lifetime, including the impact of the electrical screening on Coulomb interaction of carriers in the Auger process to explain certain inconsistency between theoretical prediction and experimental data especially in highly doped p-type HgCdTe material. Moreover, the marginal significance of the interband radiative recombination has been indicated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call