Abstract

What is the probability that a needle dropped at random on a set of points scattered on a line segment does not fall on any of them? We compute the exact scaling expression of this hole probability when the spacings between the points are independent identically distributed random variables with a power-law distribution of index less than unity, implying that the average spacing diverges. The theoretical framework for such a setting is renewal theory, to which the present study brings a new contribution. The question posed here is also related to the study of some correlation functions of simple models of statistical physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.