Abstract
The existence of overpressurized gas bubbles, and a suitable mechanism for bubble growth during low temperature ion implantations, are the essential ingredients for the validity of a gas-driven blister formation mechanism. In this paper, taking into account the difference between the formation energy of helium interstitials and the free energy change of a bubble per helium atom added, we have theoretically shown that such bubbles indeed exist, and their growth is driven by their bias for vacancies and anti-bias for interstitials which arise because of the overpressure-induced compressive stress field around them. The relations for helium density in bubbles and the bubble overpressure are derived. The role of interbubble interaction and the effect of bubbles on the elastic properties of the material have been taken into account to determine the dose dependence of the integrated lateral stress and the critical conditions for interbubble coalescence/fracture. It is shown that the observed sublinearity and the relief of integrated lateral stress are a natural consequence of the attractive interbubble interaction and do not uniquely relate to the blister formation as considered in the stress model. The derived conditions for coalescence agree well with the available data. It is argued that the present treatment provides a sound theoretical basis for the gas pressure model of radiation blistering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.