Abstract
We investigate the connections between the path-valued process called the Brownian snake and nonnegative solutions of the partial differential equation Δu=u2 in a domain of ℝ d . In particular, we prove two conjectures recently formulated by Dynkin. The first one gives a complete characterization of the boundary polar sets, which correspond to boundary removable singularities for the equation Δu=u2. The second one establishes a one-to-one correspondence between nonnegative solutions that are bounded above by a harmonic function, and finite measures on the boundary that do not charge polar sets. This correspondence can be made explicit by a probabilistic formula involving a special class of additive functionals of the Brownian snake. Our proofs combine probabilistic and analytic arguments. An important role is played by a new version of the special Markov property, which is of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.