Abstract
There are currently no models to fully predict the effects of internal wave induced scattering on acoustic pulses. Existing models, which predict time domain statistics, either use the ray-based path integral method or Monte Carlo type simulations. The path integral method fails to accurately predict all of the effects of scattering. The Monte Carlo methods base the statistics on ensemble averages and are not physics-based models. This paper overcomes these limitations by using the modes of the waveguide in a transport theory application. The transport theory equations have, thus far, been used only to explain diffusion of mode intensities and decorrelation due to internal waves at individual frequencies. This paper extends the current narrowband application predict mode correlations across different frequencies and, from that, the broadband time-front, time wander, travel time bias, and the amount of spread in intensity across time and depth. To validate these predictions, this paper uses separate parabolic equation simulations. The comparisons between the two are good, suggesting a success for the mode-based transport theory approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.