Abstract

Aims: Our aim is to explore the broad-band radio continuum spectrum of LSI+61303 during its outbursts by employing the available set of secondary focus receivers of the Effelsberg 100 m telescope. Methods: The clear periodicity of the system LSI+61303 allowed observations to be scheduled covering the large radio outburst in March-April 2012. We observed LSI+61303 on 14 consecutive days at 2.6, 4.85, 8.35, 10.45, 14.3, 23, and 32 GHz with a cadence of about 12 hours followed by two additional observations several days later. Based on these observations we obtained a total of 24 quasi-simultaneous broad-band radio spectra. Results: During onset, the main flare shows an almost flat broad-band spectrum, most prominently seen on March 27, 2012, where - for the first time - a flat spectrum (alpha=0.00+/-0.07, S nu^alpha) is observed up to 32 GHz (9 mm wavelength). The flare decay phase shows superimposed 'sub-flares' with the spectral index oscillating between -0.4 and -0.1 in a quasi-regular fashion. Finally, the spectral index steepens during the decay phase, showing optically thin emission with values alpha $\sim$ -0.5 to -0.7. Conclusions: The radio characteristics of LSI+61303 compare well with those of the microquasars XTE J1752-223 and Cygnus X-3. In these systems the flaring phase is actually also composed of a sequence of outbursts with clearly different spectral characteristics: a first outburst with a flat/inverted spectrum followed by a bursting phase of optically thin emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.