Abstract
Probabilistic roadmap (PRM) planners have been successful in path planning of robots with many degrees of freedom, but narrow passages in a robot's configuration space create significant difficulty for PRM planners. This paper presents a hybrid sampling strategy in the PRM framework for finding paths through narrow passages. A key ingredient of the new strategy is the bridge test, which boosts the sampling density inside narrow passages. The bridge test relies on simple tests of local geometry and can be implemented efficiently in high-dimensional configuration spaces. The strengths of the bridge test and uniform sampling complement each other naturally and are combined to generate the final hybrid sampling strategy. Our planner was tested on point robots and articulated robots in planar workspaces. Preliminary experiments show that the hybrid sampling strategy enables relatively small roadmaps to reliably capture the connectivity of configuration spaces with difficult narrow passages.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.