Abstract

In this paper, we consider the augmentation problem of an undirected graph with k partitions of its vertices. The main issue is how to add a set of edges with the smallest possible cardinality so that the resulting graph is 2-edge-connected, i.e., bridge-connected, while maintaining the original partition constraint. To solve the problem, we propose a simple linear-time algorithm. To the best of our knowledge, the most efficient sequential algorithm runs in O ( n ( m + n log n ) log n ) time. However, we show that it can also run in O ( log n ) parallel time on an EREW PRAM using a linear number of processors, where n is the number of vertices in the input graph. If a simple graph exists, our main algorithm ensures that it is as simple as possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.