Abstract
Many studies have focused on the mechanisms of stem cell maintenance via their interaction with a particular niche or microenvironment in adult tissues, but how formation of a functional niche is initiated, including how stem cells within a niche are established, is less well understood. Adult Drosophila melanogaster ovary Germline Stem Cell (GSC) niches are comprised of somatic cells forming a stack called a Terminal Filament (TF) and associated Cap and Escort Cells (CCs and ECs, respectively), which are in direct contact with GSCs. In the adult ovary, the transcription factor Engrailed is specifically expressed in niche cells where it directly controls expression of the decapentaplegic (dpp) gene encoding a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules, which are key factors for GSC maintenance. In larval ovaries, in response to BMP signaling from newly formed niches, adjacent primordial germ cells become GSCs. The bric-à-brac paralogs (bab1 and bab2) encode BTB/POZ domain-containing transcription factors that are expressed in developing niches of larval ovaries. We show here that their functions are necessary specifically within precursor cells for TF formation during these stages. We also identify a new function for Bab1 and Bab2 within developing niches for GSC establishment in the larval ovary and for robust GSC maintenance in the adult. Moreover, we show that the presence of Bab proteins in niche cells is necessary for activation of transgenes reporting dpp expression as of larval stages in otherwise correctly specified Cap Cells, independently of Engrailed and its paralog Invected (En/Inv). Moreover, strong reduction of engrailed/invected expression during larval stages does not impair TF formation and only partially reduces GSC numbers. In the adult ovary, Bab proteins are also required for dpp reporter expression in CCs. Finally, when bab2 was overexpressed at this stage in somatic cells outside of the niche, there were no detectable levels of ectopic En/Inv, but ectopic expression of a dpp transgene was found in these cells and BMP signaling activation was induced in adjacent germ cells, which produced GSC-like tumors. Together, these results indicate that Bab transcription factors are positive regulators of BMP signaling in niche cells for establishment and homeostasis of GSCs in the Drosophila ovary.
Highlights
A stem cell niche allows, first, the establishment of stem cells, and second, the maintenance of a balance between stem cell self-renewal and differentiation
It has been shown that niche cells secrete signaling proteins of the Bone Morphogenetic Protein (BMP) family, which by binding to receptors present at the membrane of adjacent Germline Stem Cells (GSCs), instruct these cells to maintain stem cell status
The analysis of ovaries mutant for the two bric-à-brac genes, showed that they are necessary within precursor cells for correct formation of GSC niches and for activation of the BMP pathway leading to the establishment of the first GSCs in the developing ovary
Summary
A stem cell niche allows, first, the establishment of stem cells, and second, the maintenance of a balance between stem cell self-renewal and differentiation. The Drosophila melanogaster adult ovary has proven to be an excellent model for understanding how interaction with adjacent somatic niche cells allows for maintenance of Germline Stem Cell (GSC) status [7,8]. Each GSC niche is composed of several types of somatic cells: Terminal Filament (TF) cells, a triangularly-shaped transition cell (TC), Cap Cells (CCs) and the anterior Escort Cells (ECs) (Fig 1A) [9,10,11]. Both CCs and anterior ECs are in direct (C’) Bab accumulates in TF cells and CCs, and is detected at low levels in ICs (blue bracket). CCs (yellow arrowheads) and other peripheral posterior somatic cells (blue arrowhead) accumulate pMad
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.