Abstract
In this paper, by using the Darboux transformation (DT), two types of breather solutions for the reverse space–time (RST) nonlocal short pulse equation are constructed in nonzero background: bounded and unbounded breather solutions. The degenerate DT is obtained by taking the limit of eigenvalues and performing a higher-order Taylor expansion. Then the N order breather-positon solutions are generated through degenerate DT. Some properties of the breather-positon solutions are discussed. Furthermore, rogue wave solutions are derived through the degeneration of breather-positon solutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.