Abstract

The breast cancer resistance protein (BCRPABCG2) is a member of the ATP-binding cassette family of drug transporters and confers resistance to various anticancer drugs. We show here that mice lacking Bcrp1Abcg2 become extremely sensitive to the dietary chlorophyll-breakdown product pheophorbide a, resulting in severe, sometimes lethal phototoxic lesions on light-exposed skin. Pheophorbide a occurs in various plant-derived foods and food supplements. Bcrp1 transports pheophorbide a and is highly efficient in limiting its uptake from ingested food. Bcrp1(-/-) mice also displayed a previously unknown type of protoporphyria. Erythrocyte levels of the heme precursor and phototoxin protoporphyrin IX, which is structurally related to pheophorbide a, were increased 10-fold. Transplantation with wild-type bone marrow cured the protoporphyria and reduced the phototoxin sensitivity of Bcrp1(-/-) mice. These results indicate that humans or animals with low or absent BCRP activity may be at increased risk for developing protoporphyria and diet-dependent phototoxicity and provide a striking illustration of the importance of drug transporters in protection from toxicity of normal food constituents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.