Abstract
The low methanogenic efficiency of protein wastewater during anaerobic digestion can be attributed to the hydrolysis rate-limiting caused by the complex native structure of protein. In this study, the characterization of secondary structure alterations of protein molecules under acid-base stress was investigated and the effect of structure and conformation alterations on the methanogenic efficiency of protein wastewater biotransformation was analyzed. The optimal methane yields were obtained for protein wastewater pretreated with acid and base at pH = 3 and pH = 12, which was 29.4% and 35.7% higher than that of the control group (without pretreatment), reaching 142.6 ± 4.0 mL/g protein and 149.6 ± 16.1 mL/g protein, respectively. The time economy evaluation showed that 6 h pretreatment time was scientific and reasonable whether pH = 3 or pH = 12, since the methane gain effect reached 74.4% and 82.2% longing with the anaerobic digestion proceeded to 120 h, respectively. Endogenous fluorescence characteristics illustrated that the microenvironment of protein molecules has changed regardless of acid or alkali pretreatment. The circular dichroism (CD) analysis revealed that only the content of α-helix in the secondary structure of the protein at pH = 12 decreased by 46.3%, while the contents of β-sheet, β-turn and unordered structure were 29.5 ± 0.8%, 18.9 ± 0.6% and 32.2 ± 1.3%, respectively. The increase in the composition of the unordered structure demonstrated an irreversible damage to the hydrogen bonding network in the protein. FTIR spectroscopy further confirmed that the stretching vibrations of CO in amide I led to the destruction of the hydrogen bonding network and the unfolding of the protein structure. Thus, the above work provides new insights into the anaerobic digestion of protein wastewater for methanogenic processes from the perspective of protein structure and conformational changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.