Abstract

Abstract The observed breakBRD (“break bulges in red disks”) galaxies are a nearby sample of face-on disk galaxies with particularly centrally concentrated star formation: they have red disks but recent star formation in their centers as measured by the D n 4000 spectral index. In this paper, we search for breakBRD analogs in the IllustrisTNG simulation and describe their history and future. We find that a small fraction (∼4% at z = 0; ∼1% at z = 0.5) of galaxies fulfill the breakBRD criteria, in agreement with observations. In comparison with the mass-weighted parent IllustrisTNG sample, these galaxies tend to consist of a higher fraction of satellite and splashback galaxies. However, the central, non-splashback breakBRD galaxies show similar environments, black hole masses, and merger rates, indicating that there is not a single formation trigger for inner star formation and outer quenching. We determine that breakBRD analog galaxies as a whole are in the process of quenching. The breakBRD state, with its highly centrally concentrated star formation, is uncommon in the history of either currently quiescent or star-forming galaxies; however, approximately 10% of 1010 < M */M ⊙ < 1011 quiescent galaxies at z = 0 have experienced SFR concentrations comparable to those of the breakBRDs in their past. Additionally, the breakBRD state is short lived, lasting a few hundred Myr up to ∼2 Gyr. The observed breakBRD galaxies may therefore be a unique sample of outside-in quenching galaxies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.